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Distributed systems and sensor networks in particular are in need of efficient asynchronous commu-

nication, message security and integrity, and scalability. These points are especially important in

mobile environments where mobile remote sensors are connected to a control center only via

intermittent communication. We present a general approach for dealing with the issues that arise in

such scenarios. This approach is applied to provide flexible and efficient cargo monitoring on trains.

The Java Message Service (JMS) presents a flexible transport layer for asynchronous communication

that enables transparent store-and-forward queuing for entities that need to be connected to each other.

Previously JMS was primarily used in always-connected high-bandwidth enterprise communication

systems. We present the advantages of using JMS in a mobile, bandwidth-limited, and intermittently

connected monitoring environment and provide a working implementation called the Transportation

Security SensorNet (TSSN) that makes use of an implementation of JMS called ActiveMQ. This solution

is employed here to enable monitoring of cargo in motion along trusted corridors.

Results obtained from experiments and a field trial show that using JMS provides not just a practical

alternative to often custom binary communication layers, but a better and more flexible approach, by

providing transparency. Applications on both communication ends only need to implement JMS

connectors while the remaining functionality is provided by the JMS implementation. Another benefit

arises from the exchangeability of JMS implementations. In utilizing JMS we demonstrate a new,

flexible and scalable approach to cope with challenges inherent in intermittent and low-bandwidth

communication in mobile monitoring environments.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

There exist a plethora of problems that need to be addressed
whenever disparate systems are deployed in the field that need to
communicate with each other and a control center. Additional
challenges arise given that these systems are often heterogeneous
where different system elements are not always compatible to
each other. Here we used the following scenario as a motivating
example to point out the nature of the problems.

Sensors are connected to cargo containers which they monitor.
A train is then used to transport these containers. The sensors, in our
case electronic seals, have limited capabilities and are managed
locally by a more powerful system element which we call the sensor
node that has extended functionality including a communication link
back to a control center. Hence, one sensor node controls more than
one electronic seal. From an architecture perspective a sensor node
can control many different sensors. Whenever a seal detects an event
it notifies the sensor node immediately. The sensor node then
performs an evaluation of the event and decides whether or not to
ll rights reserved.

hausen).
send it to the control center. In this paper, we focus on sending
messages to and receiving control messages from the control center.

The link between the sensor node and control center may
provide only intermittent communication. The sensor node must
deal with establishing the connection as well as transmitting
messages. Especially the latter can cause problems; in a synchro-
nous communication model the sensor node would only be able
to send one message at a time and block while waiting for its
acknowledgement. This is not feasible in this case because of the
intermittent connection, low bandwidth and high latency of the
communication link. An asynchronous communication model
overcomes this blocking problem. Furthermore, since messages
cannot be sent out immediately due to the intermittent connec-
tivity they need to be stored. This can be achieved by implement-
ing a queuing mechanism inside the sensor node.

It is also possible to send control messages such as location or
receive status inquiries from the control center to the sensor
node. Again, since there does not necessarily exist an active
connection to the sensor node messages need to be queued.
Hence, the applications in the control center are responsible for
implementing proper queuing and retry mechanisms.

Security and message integrity are critical aspects of the overall
monitoring system. If people, who want to steal cargo from the

www.elsevier.com/locate/jnca
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monitored containers, were able to tamper with the message
contents then they could spoof the system. Security is essential and
needs to be implemented in each application that sends or receives
messages as part of such a monitoring system. This brings up another
issue, scalability. Implementing asynchronous communication and
security components for each application in a small system may work
for experiments but is not feasible for large production environments.
Custom implementations for different components or every type of
sensor are labor intensive, while a generic standards-based approach
scales and eases deployment. In terms of the cargo monitoring
scenario for trains there could be many control centers, thousands
of sensor nodes and even more sensors on containers. The above is a
very common scenario for sensor network deployments even though
the particular details of the deployments may be different.

The primary use of Java Message Service (JMS) is in always-
connected high-bandwidth enterprise communication systems but its
concepts and techniques are useful in other scenarios as well. In this
paper, we demonstrate that by using JMS in these mobile monitoring
environments it is possible to overcome the problems discussed
above. In particular, we focus on the problems of asynchronous
communication, message security and integrity, and scalability.

In addition, one of the main advantages of using JMS is the fact
that applications do not need to be modified to implement their
own store-and-forward or resend mechanisms. How this is
achieved is explained in detail later. Furthermore, an example of
an implementation of a mobile monitoring system is given that
was field tested in stationary as well as intermittently connected
mobile scenarios.

Because JMS is primarily used in always-connected enterprise
networks that are not bandwidth limited, JMS has not previously
been considered an option for environments composed of mobile
elements limited via intermittent communications channels. The
contribution of this work is to demonstrate that JMS provides a
feasible solution, eliminating custom code and/or applications for
security and store-and-forward or resend message transmissions.
This work also shows that JMS offers additional benefits, e.g.,
integration with web services.

1.1. Asynchronous communication

Reliable communication between control centers and the
sensor networks cannot always be ensured. Additionally commu-
nication is based on the form of underlying connectivity that is
provided. The connectivity may vary. The fact that the system
could use a 3G system when available and resort to the satellite
communication only when needed exposes several issues.

First, message sizes should be small in order to accommodate
for the slow data rates. Possible optimizations are discussed in
Section 2.4.4 but compression or conversion into binary formats
are suitable options here.

Second, in order to address reliable transmission of messages
either a store-and-forward or a resend mechanism needs to be
implemented on both communication ends. The store-and-for-

ward technique in this context would mean that the sensor
network needs to hold on to the data captured until connectivity
is established. By contrast, in the resend scenario they would
attempt to transmit the data continuously or with a backoff timer.
In this paper, we show that JMS is able to handle asynchronous
communication scenarios well.

1.2. Message security and integrity

The data produced by sensor networks will likely be sensitive
and needs to be kept private. This is especially true for systems
whose main purpose is to provide monitoring of cargo. Cargo
information as well as status updates and events should only be
visible to authorized entities. Furthermore, it is critical that
messages being transmitted, for example, control messages that
allow the opening of cargo containers, cannot be tampered with.

In this sense it is also important to distinguish between point-

to-point and end-to-end security. Using transit networks or mes-
sage relay mechanisms is not possible when messages are secured
in a point-to-point manner because security may be compro-
mised at each individual connection point. However, in end-to-

end system security it is possible for messages to pass through
individual connection points. Within the cargo transport scenario
multiple parties may have access to intermediate parts of the
system. In particular, some services are being used by multiple
shippers and different transportation authorities. This makes end-

to-end system security a must. Another issue to consider is that
while control centers often have adequate storage and computing
power, individual sensors or sensor networks may not. Dealing
with limited computing power and bandwidth can be a challenge
when implementing security for the targeted scenarios.

JMS integrates with web service architectures their specifica-
tions. It can be used as a tunnel for SOAP messages where web
services specifications are then used to ensure message security
and integrity. This is explained in more detail later. The success of
JMS in the environment considered here is demonstrated for the
first time in this work.

1.3. Scalability

Sensor networks in general can be set up in two basic ways.
First, after an initial configuration they repeatedly report their
sensor data to a control center. Second, a control center sends out
messages to the sensors or sensor networks in order to control
their reporting or inquire for specific sensor data. Thus efficient
management and scalability can become an issue.

Even though the most common scenario is running a single
setup with one central control center or base station and multiple
sensors or sensor networks connecting to it, the integration of
multiple systems can be problematic. For example, the cargo
transport scenario allows management of different sensor net-
works and coordination between transportation systems. Further-
more, there are issues in dealing with multiple control centers
and multiple sensor networks that need to be explored. This is
especially important when it comes to managing policies and
subscriptions properly. We show that JMS provides mechanisms
to allow for scalability as well as policy and subscription manage-
ment for these challenging environments.

In the following, we first introduce the system we developed
called the Transportation Security SensorNet (TSSN) which is a
specific case of a mobile monitoring environment scenario we
described earlier. Next, we compare different messaging approaches
to JMS and describe how our application of JMS differs from others.
This paper also shows how JMS has the advantage of using web
service specifications for security and message integrity.

We then present the use of JMS in mobile monitoring envir-
onments by demonstrating how the TSSN utilizes it for commu-
nicating efficiently between its control center and sensor
networks. Finally, results from field trials are evaluated and it is
shown that JMS presents a viable solution for efficient messaging
in mobile monitoring environments.
2. Related work

2.1. Transportation Security SensorNet

The Transportation Security SensorNet by Kuehnhausen (2009)
serves as a specific scenario and platform for demonstrating the need
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of JMS for communicating efficiently between disparate mobile
entities. As shown in Fig. 1 the TSSN uses a service-oriented
architecture (SOA) approach for monitoring cargo in motion along
trusted corridors. The complete system provides a web services-based
sensor management and event notification infrastructure that is built
using open standards and specifications. This web services-based
implementation allows for platform and programming language
independence and offers compatibility and interoperability with
other systems.

The TSSN represents the integration of SOA, Open Geospatial
Consortium (OGC) specifications and sensor networks. Previous
systems and research focused either on the combination of SOA
and OGC specifications or on OGC standards and sensor networks.
However, the TSSN shows that all three can be combined and that
this combination provides capabilities to the transportation and
other industries that have not existed before. In particular, the
preeminent lack of the performance in mobile sensor network
Fig. 1. TSSN physical architecture ad

Fig. 2. TSSN message overview
environments has previously limited the application of web
services because they have been perceived as too slow and having
excessive overhead. The TSSN, as shown by the results in
Kuehnhausen (2009), demonstrates that with proper architecture
and design the performance requirements of the targeted sce-
nario, a mobile monitoring environment, can be satisfied.

Furthermore, unlike existing proprietary implementations the
TSSN allows sensor networks to be utilized in a standardized and
open way through web services. Sensor networks and their
particular communication models led to the implementation of
asynchronous message transports in SOA and are supported by
the TSSN.

An overview of the messages within the TSSN is shown in
Fig. 2. The MRN represents a train-mounted sensor network
(sensors and sensor node) that monitors seals on cargo contain-
ers. The MRN is able to receive control messages such as when to
start and stop monitoring. When sensor event is detected it is
apted from Fokum et al. (2010).

from Kuehnhausen (2009).
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transmitted from a sensor (seal) to the sensor node where it is
analyzed to determine whether or not to send out a notification to
the VNOC. Sensor management and correlation of events with
shipment and route information is then performed in the VNOC.
According to specified mappings, people and organizations that
subscribed to these notifications then receive e-mails and/or SMS
messages containing detailed information about the time, loca-
tion, cargo, logistics information, and nature of the event.

In terms of the communication, the critical link is between the
Mobile Rail Network and the Virtual Network Operation Center
because it cannot be guaranteed that there always exists a link and
hence an asynchronous communication model had to be implemen-
ted. An approach that is able to deal with message queuing on both
ends of the communication is the integration of JMS as the transport.
The TSSN implementation fully supports asynchronous communica-
tion using queues in order to send and receive messages.

2.2. Message-oriented middleware

Message-oriented middleware is a technology that is used to
decouple the exchange of messages between a sender and receiver by
using intermediaries. This allows to provide flexibility and scalability.
There are various approaches to implement message-oriented mid-
dleware, the most well-known are the Advanced Message Queuing
Protocol (AMQP) by the AMQP Working Group (2009), JMS by Hapner
et al. (2002) and the Data Distribution Service (DDS) by the Object
Management Group (2007).

AMQP provides two attributes, a protocol model and a detailed
protocol description, that can be used to develop messaging
service implementations. Vinoski (2006) argues that this
approach leads to more interoperability between vendors because
the semantics of handling messages and what is actually trans-
mitted are clearly defined.

JMS, on the other hand, defines an Application Programming
Interface (API) and leaves the inner workings and the underlying
transport protocol up to the implementation. The advantage here
is that this protocol can easily be switched without having to
modify the applications using JMS.

DDS takes a similar approach to JMS. However, DDS is data-
centric while JMS is message-centric. Pardo-Castellote (2003)
describes this in more detail but the basic idea is to uniquely
identify data objects instances and provide mechanisms to modify
their properties using keys.

2.3. Experiences with the Java Message Service

Musolesi et al. (2004) present their experiences in implement-
ing a system called EMMA (Epidemic Messaging Middleware for
Ad hoc networks) based on JMS. In particular they identified the
need to adapt JMS in order to be applicable for mobile ad hoc
networks. Their approach consists in synchronization of queues
using a middleware layer that also manages reachability of
individual nodes. For message delivery in partially connected
networks they make use of an approach called epidemic routing
which is described by Vahdat and Becker (2000), which works by
propagating messages to neighbors, their neighbors and so on. In
contrast the solution developed here and implemented in the
TSSN is standards-based using the original JMS specification and,
therefore, more compatible with other systems.

Vollset et al. (2003) present a middleware platform built for
mobile ad hoc networks. Their solution is ‘‘serverless’’ in the sense
that after an initial setup all the participating entities have a local
copy of the JMS configuration. Furthermore, they implement a new
multicast protocol for delivering messages on JMS topics to their
subscribers. Their platform is an adaptation of the original JMS
standard for ad hoc networks. In contrast, the solution proposed here
deals with point-to-point connectivity. Here we show that JMS can be
used unaltered.

In general JMS is primarily used in always-connected systems
such as the one described by Allard (2007). The Mission Data
Processing and Control Subsystem (MPCS) by Allard (2007) utilize
JMS for different levels of event notifications. However, the commu-
nication link with the flight systems is custom. Although this
represents an extreme case, it seems that using JMS for establishing
mobile connectivity is undervalued. Another, more realistic example
is the remote real-time oil well monitoring system by Hongsheng
et al. (2005), where clients receive event notifications via JMS but the
data that is collected by the remote terminal units is sent to the data
processing station using a custom process.

2.4. Web services

SOA present a flexible solution to some of the problems
mentioned earlier such as message security and scalability. The
idea is to implement specific functionality in web services that
communicate with each other using standardized interfaces.
Message exchanges in general use the flexible SOAP message
format by Lafon and Mitra (2007). This has a number of advan-
tages, routing and security mechanisms are available. JMS is able
to transmit SOAP messages. Hence, applying JMS enables the use
of web service specifications in mobile monitoring environments.

2.4.1. WS-Addressing

The WS-Addressing core specification by Gudgin et al. (2006b)
and its SOAP binding by Gudgin et al. (2006a) define how message
propagation can be achieved using the SOAP message format.
Usually the transport of messages is handled by the underlying
transport protocol but there are several advantages of storing this
transport information as part of the header in the actual SOAP
message. For example, it allows the routing of messages across
different protocols and management of individual flows and
processes within web services.

JMS uses a similar concept for its addressing but its properties are
adapted to the management of messages in queues. However, since
SOAP messages can be transported using JMS, which is the case here,
flexible routing of messages using addressing models is possible.

2.4.2. WS-Security

The WS-Security specification as described by Lawrence et al.
(2006) deals with the many features needed to achieve end-to-end

message security. This provides security throughout message
routing and overcomes the limitations of point-to-point transport

layer security such as HTTPS. Furthermore, the specification
provides support for various security tokens, trust domains,
signature formats and encryption technologies. Whenever SOAP
messages are transported using the JMS, WS-Security can be
applied. In this scenario JMS simply acts as a tunnel.

2.4.3. WS-ReliableMessaging

Without additional specifications like WS-ReliableMessaging by
Fremantle et al. (2007), the delivery of SOAP messages is based
purely on best effort and cannot necessarily be guaranteed. JMS
provides several mechanisms for dealing with message reliability
issues. Within transactions, messages are acknowledged and if
necessary redelivered. When a message carries the persistent

attribute, JMS message brokers store the message in order to be
able to recover it in case of a failure.

2.4.4. Efficient data transmission

The SOAP 1.2 Primer by Lafon and Mitra (2007) includes
references to several enhancements of the original SOAP standard.
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In particular they deal with potential performance problems and
the need for binary data transport in SOAP. The XML-binary

Optimized Packaging (XOP) specification by Mendelsohn et al.
(2005) defines the use of MIME Multipart/Related messages pro-
vided by Levinson (1998) to avoid encoding overhead that occurs
when binary data is used directly within the SOAP message. XOP
extracts the binary content and uses URIs to reference it in the
extended part of the message. An abstract specification that uses
this idea is the Message Transmission Optimization Mechanism

(MTOM) by Nottingham et al. (2005).
Another extension of the SOAP standard is the Resource

Representation SOAP Header Block (RRSHB) by Gudgin et al.
(2005) that allows for caching of data elements using Representa-

tion header blocks. They contain resources that are referenced in
the SOAP Body which might be hard to retrieve or simply
referenced multiple times. Instead of having to reacquire these
resources over and over again, a service may choose to use the
cached objects which speeds up the overall processing time.

These extensions and the web service specifications described
above show that SOA is feasible for the scenarios considered. In
the following sections we discuss this unique combination of JMS,
web services and mobile monitoring environments.
3. Proposed solution

To provide a flexible, scalable and suitable solution for a
mobile monitoring environment, a transparent store-and-forward

approach is used here. The reason is that a resend mechanism is
often implemented directly in the application which is not
flexible. The store-and-forward approach, however, allows for an
efficient and scalable centralized storage pool that is automati-
cally forwarding the messages.

How JMS can be applied effectively is developed here using the
Transportation Security SensorNet (TSSN) by Kuehnhausen (2009)
as a motivating example (Fig. 1). The TSSN provides monitoring
capabilities in mobile environments and makes use of JMS. The
TSSN uses an SOA approach for monitoring cargo in motion along
trusted corridors. The system is built using web service specifica-
tions and utilizes a Java Message Service implementation for
connectivity between its Virtual Network Operation Center
(VNOC), the control center in this case, and the Mobile Rail
Networks (MRN) it monitors, which contain the sensor nodes
and sensors. A sensor node controls multiple sensors.

The TSSN uses the JMS through one of its open-source
implementations called ActiveMQ which is described in detail
by Snyder et al. (2009). Each application in the TSSN is a web
service. These web services can be utilized through their JMS
addresses. ActiveMQ establishes a queue for each web service and
uses these queues to store-and-forward messages to them.

This queue approach has the advantage that applications do
not need to be modified and implement their own store-and-

forward or resend mechanisms. It is also transparent to clients of
the web services since apart from using another address, the JMS
address, interfacing with the web services stays the same. The
TSSN data traffic between the VNOC and the MRN consists of
SOAP messages that are enveloped in JMS messages.

In this paper, we explain the basic concepts of JMS and how
they are matched to mobile monitoring environments and one
implementation, the TSSN. Furthermore the details for the JMS
implementation within the TSSN are discussed.

3.1. Java Message Service

JMS by Hapner et al. (2002) provides a standardized specification
for synchronously and asynchronously transporting messages using
queues. Its implementation is vendor specific but the interfaces are
clearly defined in the specification so that this is an open system
where changing vendors is possible. The following sections match
JMS concepts to aspects of mobile monitoring environments.
3.1.1. Components

In the JMS context, clients are called producers when they
create and send messages. The receiving end is called a consumer.
Note that a client can be both, a producer and a consumer, at the
same time. Clients connect to JMS providers which are entities
that have the specified interfaces to send and receive messages.

Most of the connections are point-to-point and a queue is the
commonly used destination of a message. The queue contains
messages from producers to a single consumer that have not been
received. Within the TSSN unique queues are used to represent the
individual web services. Messages are usually delivered in order
First In, First Out (FIFO) following the basic principle of a queue,
but this is dependent on the underlying implementation of JMS.

Topics have multiple consumers and can have one or many
producers publishing messages. They are used in publish–sub-
scribe models and contain messages that have not yet been
published.

A message can be any object or data that needs to be
transported using JMS. JMS describes messages as entities that
consist of a header, which contains identification and routing
information and a body carrying the data. Additional properties
such as application, provider or standards specific properties can
be attached to messages. This is effectively used in providing
functionality like security or reliable messaging.

Note that since JMS does not define a message format per se,
implementation may vary significantly. For service-oriented
architectures the agreed standard message format is SOAP.
Easton et al. (2008) describe in detail how SOAP can be used
within JMS. Because the TSSN is based on SOA and uses SOAP
messages it is able use web service specifications as part of
JMS and therefore provide features such as WS-Addressing and
WS-Security as described in Section 2.4.

In order to identify objects within the JMS implementation in a
standardized way the specification makes use of the Java Naming
and Directory Interface (JNDI) Application Programming Interface
by Sun Microsystems (1999). JNDI provides a directory service for
objects. JMS clients look up objects and use them in connections
as shown in Fig. 3.
3.1.2. Messaging models

JMS supports the two common messaging models; point-to-
point and publish–subscribe. These are also called message
domains. Both of them allow for true asynchronous communica-
tion in which the message consumer does not need to be
connected to the producer at the time when the message is sent
and vice versa.

Point-to-point. This messaging model makes use of queues and
is shown in Fig. 4. Its main application is a request–response type
of message exchange. Messages in this model are truly unique in
the sense that once the consumer receives and acknowledges the
message it is removed from the queue. While there can be only a
single consumer, messages can be put on the queue by multiple
producers. This is the model used here because message propaga-
tion throughout the mobile monitoring system is done from one
web service to another.

Publish–subscribe. Whenever there is the need for multiple
consumers to receive messages, a subscription model is useful. The
consumers subscribe to a specific topic and receive messages as
soon as they are published by one or multiple producers as shown



Fig. 3. JMS administration according to Hapner et al. (2002).

Fig. 4. Point-to-Point messaging.

Fig. 5. Publish/Subscribe messaging.
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in Fig. 5. There exists no direct connection between publishers and
subscribers.

Here the JMS publish–subscribe messaging model is currently
not used since publications are handled using the web service
standard WS-Eventing for SOAP messages. However, JMS publish–

subscribe presents a flexible approach to scalability that may
be used in future versions of the system instead of the current
WS-Eventing approach. Since switching between messaging mod-
els within this system is only based on configuration parameters
and not on a different implementation it is possible to use JMS
publish–subscribe effectively in mobile monitoring environments
as well.

3.2. Web services integration

The implementation of the TSSN uses the Apache Axis2 web
services software stack. By default Axis2 uses request–response in
a synchronous manner. This means that the client has to wait, and
is therefore blocking, until it receives the response from the
service. In scenarios of interest here the client can experience
timeouts; thus synchronous communication is not feasible.

A better option is to make the communication between
services asynchronous. This resolves timeout issues and deals
with connections that are only temporary. The TSSN was adjusted
at the client, transport and service level in order to support
asynchronous communication. In order to correlate request and
response messages Axis2 makes use of the WS-Addressing speci-
fication, in particular the ReplyTo and RelatesTo fields.

There exist various forms of transport protocols that are
suitable for asynchronous communication. Axis2 by default sup-
ports HTTP, SMTP, and JMS as asynchronous transports but other
transports can easily be defined and plugged in.

A transport receiver for JMS was added to this system’s web
services. This represents the receiving end of the communication
and allows web services and clients to consume JMS messages by
creating a JMS address for them while a transport sender allows
JMS messages to be produced.
Axis2 by default sets up a queue for each of the services and
uses the service name as the queue name. Since a service is not
necessarily unique, this name can be changed in the service
configuration. For the MRN this naming consists of the node id
which is used to represent a sensor network and the name of the
service. For the VNOC the name is made up of the host on which
the service is run and its service name. This makes it possible to
easily identify queues and avoid misconfiguration of the JMS
implementation while also offering a naming scheme that is
scalable.

3.3. JMS implementation

Apache ActiveMQ is used here for JMS messaging. A detailed
introduction is given by Snyder et al. (2009). ActiveMQ is mostly
used in enterprise systems where high-bandwidth connectivity is
a given and high throughput is important. Note that the version
used here had to be modified by the authors because ActiveMQ
could not work correctly without an existing and permanent
Internet connection. However, being able to function without
constant connectivity is essential in mobile monitoring environ-
ments. Hence, ActiveMQ was modified so that it was able to start
up without an existing Internet connection. Furthermore, it was
modified so that the status of the network interface would be
checked and JMS queue connectivity established or reestablished
automatically. The original version of ActiveMQ would not
attempt to reestablish connectivity by itself.

The following explains the important components of ActiveMQ
that are used here. A broker is responsible for managing queues
and topics. It receives message from producers which connect to it
and delivers them to the corresponding consumers. Brokers allow
producers and consumers to use various protocols to connect to it.
In ActiveMQ these connectivity entities are defined as transport

connectors.
Multiple brokers can form a network of brokers using network

connectors. This allows the use of distributed queues and is the
configuration used to connect the VNOC and MRN. In order to be
flexible the configuration of a network bridge is initiated by the
MRN. Establishing a duplex connection then enables messages to
be forwarded in both directions. The advantage for the scenarios
of interest here is that the VNOC does not need to be reconfigured
every time a new MRN is set up.

ActiveMQ allows several different protocols (e.g., AMQP by
AMQP Working Group, 2009, OpenWire by Apache Software
Foundation, 2009, REST by Fielding, 2000, Stomp by Strachan,
2005, XMPP by Saint-Andre, 2004), to be used for message
transmission. The system here envelops SOAP messages in JMS
messages. Then, ActiveMQ makes use of the OpenWire protocol
by Apache Software Foundation (2009), which is an optimized
binary compressed format tailored to efficient management of
JMS queues and topics as well as network connectivity, to trans-
port them. This is another advantage of using ActiveMQ in
scenarios of interest here since it makes sure that communication
between brokers is bandwidth efficient.

3.4. Distributed queues

Connections from the VNOC to the MRN and vice versa are
point-to-point which corresponds to queues in JMS. Queues can be
distributed across several brokers. Whenever the brokers are
connected to each other they exchange information about which
broker has the consumer and the other brokers forward their queue
messages to that broker. In the following paragraphs we explain
how the two common types of message exchanges work using
distributed queues and how they are used here.



Fig. 6. One-way JMS message transmission.

Fig. 7. Two-way JMS message transmission.
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Notification messages require only one-way communication as
shown in Fig. 6. Within the system a web service acts as a
producer and puts the notification onto the queue which corre-
sponds to the web service it wants to notify. This is done by using
the specified transport connector to connect to the local broker and
deliver the message to it. The broker then puts the message on the
queue end that it manages. Whenever the broker can contact
the queue end with the consumer it forwards the message. The
receiving web service uses a listener to detect when its queue at
the broker contains new messages. It then uses its local transport

connector to consume the notification.
Control messages that are sent by the VNOC to the MRN are

good examples of two-way communications. As shown in Fig. 7 in
a request–response scenario the client creates a temporary queue

at its local broker that only itself knows about. This is where the
response message will be put. The request then follows the usual
path from the local transport connector to the local broker, from
the local broker to the broker with the specified consumer and then
using the remote transport connector to the according web service.
The JMS message that is transmitted contains a ReplyTo field with
the temporary queue that is used for the response. The response is
then sent back using the web service’s local transport connector,
local broker, remote broker until it is consumed from the tempor-

ary queue by the original client.
In this system all of the queue creation, message queuing and

brokering are transparent to the web services. Whenever asyn-
chronous communication using JMS is required the clients and
web services simply use JMS addresses instead of the default
HTTP ones; these can be set in their configuration files. This
makes the solution scalable and flexible since a store-and-forward

mechanism does not need to be implemented in each web service
but is provided by an ActiveMQ JMS message broker. This holds
true not only for SOAs that make use of web services but is also
applicable to other systems.
4. Results

The system described above has been successfully tested in
field trials. Results are presented from two experimental condi-
tions: a stationary scenario and a mobile scenario. The mobile
scenario was carried out by mounting the equipment onto a train.
Throughout the experiments communication between the VNOC
and the MRN in the TSSN is using a satellite link, in this case
Iridium at 2.4 kb/s. Both scenarios were performed as part of a
longhaul trial in Mexico (see Fig. 8).
The MRN sensor node was set up on a Panasonic ToughBook
placed inside a locomotive that used a transceiver to commu-
nicate with Hi-G-Tek electronic seals (see Hi-G-Tek, 2009) and an
Iridium satellite modem to transmit information to the VNOC and
the TDE which were located in Overland Park, KS. The hardware
setup is discussed in detail in Fokum et al. (2010).

The focus of this paper is on showing that JMS can be used in
mobile monitoring environments. Monitoring the ActiveMQ mes-
sage queue (see Figs. 9–11) shows when messages were put on
the queue and taken off. These results also show when we had an
ActiveMQ connection and JMS messages could be transported
through the distributed queue. Table 1 shows performance data
for the presented cargo monitoring scenario.

4.1. Stationary

Figures 9 and 10 show tests results acquired from when the
MRN was set up in a rail yard but not mounted on a train and not
moving. The time each message spent on the distributed queues
(shown as ‘‘On Queue in sec’’) as well as when the MRN and the
VNOC brokers had a JMS network bridge established and were,
therefore, fully connected (shown as ‘‘Bridge established’’) is
displayed. It can be seen that while all messages were success-
fully transmitted the time a message was on a queue is dependent
on the quality of the satellite connection.

4.2. Mobile

The more interesting scenario is to use TSSN in a mobile
monitoring environment. For this purpose the MRN was deployed
on a train and sensors attached to cargo containers. Figure 11
shows results of roughly the first hour (8:30–9:30am, July 30,
2009) of the longhaul trial along the path shown in Fig. 8. Due to a
hardware problem after about 9:30am the system clock synchro-
nization is significantly off and the remaining data that was
logged for off-line performance analysis, especially time measure-
ments, cannot be used. However, it is important to emphasize
that the experiment was successful because the TSSN kept
operating correctly, i.e., messages were transmitted and received
using ActiveMQ for more than 32 h.

Figure 11 shows in detail when messages were put on a queue,
when they were consumed and at which time the JMS network
bridge (actual connectivity) was established. A comparison of
times message required to be transmitted from the MRN to the
VNOC is shown in Table 1. Whenever connectivity, in ActiveMQ
called a bridge, is established the actual message transmission
takes about 11.6 s on average. This is in stark contrast to when the
satellite link is down and needs to be established before sending
out messages. In that case it took 616.2 s on average with the
slowest message being received 1273.1 s or more than 21 min
after it was sent.

The key characteristic here is the availability of the satellite
link. The trial was performed in a mountainous environment
where the satellite view was partially obstructed and hence the
times measured may not be the same in a different geographic
region. Looking at the average case of about 7 min per message
transmission though the system is found to be in range of mobile
monitoring environments.

A comparison of these results to a previous shorthaul trial
which is described in detail in Fokum et al. (2010) and
Kuehnhausen (2009) is shown in Table 2. During the shorthaul
the MRN was continuously connected to the VNOC using a GSM
modem with a peak throughput of about 700 kb/s. Looking at the
minimum times and assuming this as the best case scenario the
satellite configuration is slower by a factor of about 13.



Fig. 8. Route for longhaul field trial, route starts at San Luis Potosi and ends approximately 210 mile down the track (from Google Maps).

Bridge established
On Queue in sec

Fig. 9. Initial test.

Bridge established
On Queue in sec

Fig. 10. Follow-up tests.
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Bridge established

Seconds on queue

Fig. 11. ActiveMQ message queue for mobile scenario.

Table 1
Elapsed time from MRN to VNOC during trial in seconds.

Case Min. Max. Mean Median Std. dev

Link down 31.29 1273.1 616.26 553.23 411.36

Link up 5.85 40.53 11.62 6.02 10.77

Average 5.85 1273.1 481.90 430.97 441.86

Table 2
Comparison of elapsed time from MRN to VNOC of longhaul to shorthaul trial in

seconds.

Case Min. Max. Mean Median Std. dev

Shorthaul 0.45 2.90 1.89 1.94 0.62

Longhaul 5.85 1273.1 481.90 430.97 441.86
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The sensor node could communicate with all the sensors it
monitored. It has to be noted that multihop communications
were not supported by the sensors even though this feature is
essential for a rail-based sensor network. Satellite communication
was working whenever a clear view of the sky was available and
the system reliably attempted to ‘‘call home’’ every 10 min based
on a timer. The TSSN worked as designed. It was able to propagate
detected events through the entire system to the end user and
perform sensor management tasks reliably.
5. Conclusion

Using JMS in mobile monitoring environments addresses
asynchronous communication, message security and integrity,
and scalability for the scenarios of interest and it has been shown
here to work in harsh environments. We showed that JMS
technology can be utilized to provide drop-in connectivity
between distributed and delay tolerant systems. Previously JMS
was primarily used in always-connected high-bandwidth scenar-
ios, here we demonstrated that its concepts and techniques are
useful in mobile monitoring environments as well.

JMS provides a transparent asynchronous communication
model that is scalable and flexible since a store-and-forward
mechanism does not need to be implemented in each component
but is provided by a JMS message broker. This is done using
distributed queues that are managed by network connectors as
described above.

Since JMS allows the transport of all types of messages
including SOAP messages, web service specifications were used
here to provide features such as end-to-end message security and
integrity. In terms of scalability JMS makes it possible to connect
disparate systems with limited effort without having to imple-
ment store-and-forward, resend mechanisms and security again
and again. Furthermore, JNDI and support for different messaging
models enhance scalability for JMS-based systems.

In this paper, we presented a new and flexible approach to
deal with challenges in mobile monitoring environments such as
intermittent and low-bandwidth communication. This approach
that utilizes the features of JMS providing asynchronous commu-
nication, message security and integrity, and scalability.
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